Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing
نویسندگان
چکیده
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic selection. However, the use of GBS data poses important challenges, and the accuracy of genomic prediction using GBS is currently undergoing investigation in several crops, including maize, wheat, and cassava. The main objective of this study was to evaluate various methods for incorporating GBS information and compare them with pedigree models for predicting genetic values of lines from two maize populations evaluated for different traits measured in different environments (experiments 1 and 2). Given that GBS data come with a large percentage of uncalled genotypes, we evaluated methods using nonimputed, imputed, and GBS-inferred haplotypes of different lengths (short or long). GBS and pedigree data were incorporated into statistical models using either the genomic best linear unbiased predictors (GBLUP) or the reproducing kernel Hilbert spaces (RKHS) regressions, and prediction accuracy was quantified using cross-validation methods. The following results were found: relative to pedigree or marker-only models, there were consistent gains in prediction accuracy by combining pedigree and GBS data; there was increased predictive ability when using imputed or nonimputed GBS data over inferred haplotype in experiment 1, or nonimputed GBS and information-based imputed short and long haplotypes, as compared to the other methods in experiment 2; the level of prediction accuracy achieved using GBS data in experiment 2 is comparable to those reported by previous authors who analyzed this data set using SNP arrays; and GBLUP and RKHS models with pedigree with nonimputed and imputed GBS data provided the best prediction correlations for the three traits in experiment 1, whereas for experiment 2 RKHS provided slightly better prediction than GBLUP for drought-stressed environments, and both models provided similar predictions in well-watered environments.
منابع مشابه
Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding
Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which ...
متن کاملPotential of low-coverage genotyping-by-sequencing and imputation for cost-effective genomic selection in bi-parental segregating populations
Genotyping-by-sequencing (GBS) is an alternative genotyping method to singlenucleotide polymorphism (SNP) arrays that has received considerable attention in the plant breeding community. In this study we use simulation to quantify the potential of lowcoverage GBS and imputation for cost-effective genomic selection in biparental segregating populations. The simulations comprised a range of scena...
متن کاملParent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding
The increased usage of whole-genome selection (WGS) and other molecular evaluation methods in plant breeding relies on the ability to genotype a very large number of untested individuals in each breeding cycle. Many plant breeding programs evaluate large biparental populations of homozygous individuals derived from homozygous parent inbred lines. This structure lends itself to parent-progeny im...
متن کاملEffectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments
Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F(2)-derived lines from each of five ...
متن کاملRapid Cycling Genomic Selection in a Multiparental Tropical Maize Population
Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombi...
متن کامل